Efficient Defenses Against Adversarial Examples for Deep Neural Networks

Irina Nicolae Ambri @ririnicolae @amb IBM Research Al

Ambrish Rawat

@ambrishrawat

GreHack #5

November 17, 2017

So far...

- Machine learning for security
 - Intrusion detection¹
 - Malware analysis²

This talk is about

• Security for machine learning

¹Buczak & Guven, *A Survey of Data Mining and Machine Learning Methods for Cyber Security Intrusion Detection*. IEEE Comunications Surveys & Tutorials, 2015.

²Gandotra et al., *Malware Analysis and Classification: A Survey*, Journal of Information Security, 5, 56–64, 2014.

Machine Learning and Adversarial Examples

Training

Prediction

- Perturb model inputs with crafted noise
- Model fails to recognize input correctly
- · Attack undetectable by humans
- Random noise does not work.

Practical Examples of Attacks

Image segmentation³

Attack noise hides pedestrians from the detection system.

³Metzen et al., *Universal Adversarial Perturbations Against Semantic Image Segmentation*. https://arxiv.org/abs/1704.05712.

Road signs⁴

Car ends up ignoring the stop sign.

True image

Adversarial image

⁴McDaniel et al., *Machine Learning in Adversarial Settings*. IEEE Security and Privacy, vol. 14, pp. 68-72, 2016.

Okay Google, text John!⁵

- Stealthy voice commands recognized by devices
- Humans cannot detect it.

⁵Zhang et al., *DolphinAttack: Inaudible Voice Commands*, ACM C

Deep Learning and Adversarial Samples

- Interconnected layers propagate the information forward.
- Model learns weights for each neuron.

- Specific neurons light-up depending on the input.
- Cumulative effect of activation moves forward in the layers.

Small variations in the input \rightarrow important changes in the output.

- + Enhanced discriminative capacities
- Opens the door to adversarial examples

The **learned model** slightly differs from the **true** data distribution...

The Space of Adversarial Examples

... which makes room for adversarial examples.

Attack: Use the Adversarial Directions

- Most attacks try to move inputs across the boundary.
- Attacking with a random distortion doesn't work well in practice.

Given x, find x' where

- x and x' are close
- $\operatorname{output}(x) \neq \operatorname{output}(x')$

۸	C . I		
Annroximations	of the	Original	nrohlem
Approximations	OI LIIC	Original	problem

FGSM [1]	quick, rough, fixed budget
Random + FGSM [2]	random step, then FGSM
DeepFool [3]	find minimal perturbations
JSMA [4]	modify most salient pixels
C&W [5]	strongest to date

Defense: Adversarial Training

 Adapt the classifier to attack directions by including adversarial data at training.

- Adapt the classifier to attack directions by including adversarial data at training.
- But there are always new adversarial samples to be crafted.

	Туре	Description
AT VAT FS LS	data augmentation data augmentation preprocessing preprocessing	train also with adv. examples train also with virtual adv. examples squeeze input domain smooth target outputs

- Adversarial Training (AT) [1]
- Virtual Adversarial Training (VAT) [6]
- Feature Squeezing (FS) [7]
- Label Smoothing (LS) [8]

Contribution: Effective Defenses Against Adversarial Samples

Gaussian Data Augmentation (GDA)

Gaussian noise does not work for attacks, but does it work as a defense?

- Reinforce neighborhoods around points using random noise.
- For each input image, generate *N* versions by adding Gaussian noise to the pixels.
- Train the model on the original data and the noisy inputs.

Objective Limit the cumulative effect of errors in the layers.

$$f(x) = \begin{cases} RELU \\ 0, & x < 0 \\ x, & x \ge 0. \end{cases}$$

Objective Limit the cumulative effect of errors in the layers.

$$f(x) = \begin{cases} RELU \\ 0, & x < 0 \\ x, & x \ge 0. \end{cases}$$

Bounded RELU
$$f_t(x) = \begin{cases} 0, & x < 0 \\ x, & 0 \le x < t \\ t, & x \ge t. \end{cases}$$

Comparison with Other Defenses

Defense	Training	Prediction
Feature Squeezing Label Smoothing	preproc. input preproc. output	preproc. input, perf. loss
Adversarial Training GDA + BRELU	train + attack + retrain add noise	- -

Advantages of GDA + BRELU

- Defense agnostic to attack strategy
- Model performance for original inputs is conserved
- Performs better than other defenses on adversarial samples
- Almost no overhead for training and prediction.

IBM

Experiments

- MNIST dataset of handwritten digits
 - ullet 60,000 training + 10,000 test images
- CIFAR-10 dataset of 32 × 32 RGB images
 - 50,000 training + 10,000 test images
 - 10 categories
- Convolutional neural net (CNN) architecture

Threat model

- Black-box: attacker has access to inputs and outputs
- White-box: attacker also has access to model parameters

Steps

- Train model with different defenses
- Generate attack images
- Compute defense performance on attack images

Amount of perturbation necessary to fool the model

With $\mathsf{GDA} + \mathsf{BRELU}$, the perturbation necessary for an attack becomes **visually detectable**.

Comparison of different defenses against white-box attacks

CIFAR-10

 $\mathsf{Accuracy} = \mathsf{\%} \mathsf{ of correct predictions} = \mathsf{TP} + \mathsf{TN}$

Comparison of different defenses against black-box attacks

Attack Defense	FGSM	Rand+FGSM	DeepFool	JSMA	C&W
CNN	94.46	40.70	92.95	97.95	93.10
Feature squeezing	96.31	91.09	96.68	97.48	96.75
Label smoothing	86.79	20.28	84.58	95.86	84.81
FGSM adv. training	91.86	49.77	85.91	98.62	97.71
VAT	97.53	74.35	96.03	98.26	96.11
GDA + RELU	98.47	80.25	97.84	98.96	97.87
GDA + BRELU	98.08	75.50	98.00	98.88	98.03

Attacks transferred from ResNet to CNN on MNIST $Accuracy = \% \ of \ correct \ predictions = TP + TN$

IBM

Conclusion

Our contribution

- Improved defense against multiple types of attacks
- Model performance for clean inputs is preserved
- No retraining, no overhead for prediction
- Easy to integrate into models.

Takeaway

 The problem of adversarial examples needs to be solved before applying machine learning.

nemesis

- Our library of attacks and defenses
- Soon to be open source.

Full paper at https://arxiv.org/pdf/1707.06728.pdf

- Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples. CoRR, abs/1412.6572, 2014. URL http://arxiv.org/abs/1412.6572.
- [2] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Dan Boneh, and Patrick McDaniel. Ensemble adversarial training: Attacks and defenses. arXiv preprint arXiv:1705.07204, 2017.
- [3] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: a simple and accurate method to fool deep neural networks. CoRR, abs/1511.04599, 2015. URL http://arxiv.org/abs/1511.04599.
- [4] Nicolas Papernot, Patrick D. McDaniel, Somesh Jha, Matt Fredrikson, Z. Berkay Celik, and Ananthram Swami. The limitations of deep learning in adversarial settings. CoRR, abs/1511.07528, 2015. URL http://arxiv.org/abs/1511.07528.
- [5] Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In *IEEE Symposium on Security and Privacy*, 2017. URL https://arxiv.org/abs/1608.04644.

- [6] Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, and Shin Ishii. Virtual adversarial training: a regularization method for supervised and semi-supervised learning. *arXiv* preprint *arXiv*:1704.03976, 2017.
- [7] Weilin Xu, David Evans, and Yanjun Qi. Feature squeezing: Detecting adversarial examples in deep neural networks. CoRR, abs/1704.01155, 2017. URL http://arxiv.org/abs/1704.01155.
- [8] David Warde-Farley and Ian Goodfellow. Adversarial perturbations of deep neural networks. In Tamir Hazan, George Papandreou, and Daniel Tarlow, editors, *Perturbation, Optimization, and Statistics.* 2016.

