Efficient Defenses Against Adversarial Examples for Deep Neural Networks

Valentina Zantedeschi @vzantedesc
Jean Monnet University

Irina Nicolae @ririnicolae
IBM Research AI

Ambrish Rawat @ambrishrawat

GreHack #5
November 17, 2017
So far...

- Machine learning for security
 - Intrusion detection\(^1\)
 - Malware analysis\(^2\)

This talk is about

- Security for machine learning

Machine Learning and Adversarial Examples
Machine Learning

Training

Inputs

- e.g. picture

Expected Outputs

- e.g. class id

Prediction

Prediction Model

Training

Prediction Model

Bird
Adversarial Examples

- Perturb model inputs with crafted noise
- Model fails to recognize input correctly
- Attack undetectable by humans
- Random noise does not work.
Practical Examples of Attacks
Attack noise hides pedestrians from the detection system.

Car ends up ignoring the stop sign.

True image Adversarial image

Executing Voice Commands

Okay Google, text John!5

- Stealthy voice commands recognized by devices
- Humans cannot detect it.

5Zhang et al., \textit{DolphinAttack: Inaudible Voice Commands}, ACM CCS 2017.
Deep Learning and Adversarial Samples
Deep Neural Networks

Deep Magic Box

Input
e.g picture

Deep Magic Box

Output
e.g. class id
Deep Neural Networks

- Interconnected layers propagate the information forward.
- Model learns weights for each neuron.
Deep Neural Networks

- Specific neurons light-up depending on the input.
- Cumulative effect of activation moves forward in the layers.
Small variations in the input → important changes in the output.

+ Enhanced discriminative capacities
- Opens the door to adversarial examples
The **learned model** slightly differs from the **true** data distribution...
... which makes room for adversarial examples.
• Most attacks try to move inputs across the boundary.
• Attacking with a random distortion doesn’t work well in practice.
Finding Adversarial Examples

Given x, find x' where
- x and x' are close
- $\text{output}(x) \neq \text{output}(x')$

<table>
<thead>
<tr>
<th>Approximations of the original problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>FGSM [1]</td>
</tr>
<tr>
<td>Random + FGSM [2]</td>
</tr>
<tr>
<td>DeepFool [3]</td>
</tr>
<tr>
<td>JSMA [4]</td>
</tr>
<tr>
<td>C&W [5]</td>
</tr>
<tr>
<td>quick, rough, fixed budget</td>
</tr>
<tr>
<td>random step, then FGSM</td>
</tr>
<tr>
<td>find minimal perturbations</td>
</tr>
<tr>
<td>modify most salient pixels</td>
</tr>
<tr>
<td>strongest to date</td>
</tr>
</tbody>
</table>
• Adapt the classifier to attack directions by including adversarial data at training.
Defense: Adversarial Training

- Adapt the classifier to attack directions by including adversarial data at training.
- But there are always new adversarial samples to be crafted.
Defenses

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>data augmentation train also with adv. examples</td>
</tr>
<tr>
<td>VAT</td>
<td>data augmentation train also with virtual adv. examples</td>
</tr>
<tr>
<td>FS</td>
<td>preprocessing squeeze input domain</td>
</tr>
<tr>
<td>LS</td>
<td>preprocessing smooth target outputs</td>
</tr>
</tbody>
</table>

- Adversarial Training (AT) [1]
- Virtual Adversarial Training (VAT) [6]
- Feature Squeezing (FS) [7]
- Label Smoothing (LS) [8]
Contribution: Effective Defenses Against Adversarial Samples
Gaussian Data Augmentation (GDA)

Gaussian noise does not work for attacks, but does it work as a defense?

- Reinforce neighborhoods around points using random noise.
- For each input image, generate N versions by adding Gaussian noise to the pixels.
- Train the model on the original data and the noisy inputs.
Objective Limit the cumulative effect of errors in the layers.

\[
f(x) = \begin{cases}
0, & x < 0 \\
x, & x \geq 0.
\end{cases}
\]
Objective Limit the cumulative effect of errors in the layers.

ReLU

\[
f(x) = \begin{cases}
0, & x < 0 \\
x, & x \geq 0.
\end{cases}
\]

Bounded RELU

\[
f_t(x) = \begin{cases}
0, & x < 0 \\
x, & 0 \leq x < t \\
t, & x \geq t.
\end{cases}
\]
Comparison with Other Defenses

<table>
<thead>
<tr>
<th>Defense</th>
<th>Training</th>
<th>Prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feature Squeezing</td>
<td>preproc. input</td>
<td>preproc. input, perf. loss</td>
</tr>
<tr>
<td>Label Smoothing</td>
<td>preproc. output</td>
<td>-</td>
</tr>
<tr>
<td>Adversarial Training</td>
<td>train + attack + retrain</td>
<td>-</td>
</tr>
<tr>
<td>GDA + BRELU</td>
<td>add noise</td>
<td>-</td>
</tr>
</tbody>
</table>

Advantages of GDA + BRELU

- Defense agnostic to attack strategy
- Model performance for original inputs is conserved
- Performs better than other defenses on adversarial samples
- Almost no overhead for training and prediction.
Experiments
Setup

- MNIST dataset of handwritten digits
 - 60,000 training + 10,000 test images
- CIFAR-10 dataset of 32×32 RGB images
 - 50,000 training + 10,000 test images
 - 10 categories
- Convolutional neural net (CNN) architecture
Setup

Threat model

- **Black-box**: attacker has access to inputs and outputs
- **White-box**: attacker also has access to model parameters

Steps

- Train model with different defenses
- Generate attack images
- Compute defense performance on attack images
<table>
<thead>
<tr>
<th>FGSM</th>
<th>DeepFool</th>
<th>JSMA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

With GDA + BRELU, the perturbation necessary for an attack becomes **visually detectable**.
Comparison of different defenses against white-box attacks

(a) FGSM attack

(b) Random + FGSM attack

CIFAR-10

Accuracy = % of correct predictions = TP + TN
Black-Box Attacks

Comparison of different defenses against black-box attacks

<table>
<thead>
<tr>
<th>Defense</th>
<th>Attack</th>
<th>FGSM</th>
<th>Rand+FGSM</th>
<th>DeepFool</th>
<th>JSMA</th>
<th>C&W</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNN</td>
<td>FGSM</td>
<td>94.46</td>
<td>40.70</td>
<td>92.95</td>
<td>97.95</td>
<td>93.10</td>
</tr>
<tr>
<td></td>
<td>Feature squeezing</td>
<td>96.31</td>
<td>91.09</td>
<td>96.68</td>
<td>97.48</td>
<td>96.75</td>
</tr>
<tr>
<td></td>
<td>Label smoothing</td>
<td>86.79</td>
<td>20.28</td>
<td>84.58</td>
<td>95.86</td>
<td>84.81</td>
</tr>
<tr>
<td></td>
<td>FGSM adv. training</td>
<td>91.86</td>
<td>49.77</td>
<td>85.91</td>
<td>98.62</td>
<td>97.71</td>
</tr>
<tr>
<td>VAT</td>
<td></td>
<td>97.53</td>
<td>74.35</td>
<td>96.03</td>
<td>98.26</td>
<td>96.11</td>
</tr>
<tr>
<td>GDA + RELU</td>
<td></td>
<td>98.47</td>
<td>80.25</td>
<td>97.84</td>
<td>98.96</td>
<td>97.87</td>
</tr>
<tr>
<td>GDA + BRELU</td>
<td></td>
<td>98.08</td>
<td>75.50</td>
<td>98.00</td>
<td>98.88</td>
<td>98.03</td>
</tr>
</tbody>
</table>

Attacks transferred from ResNet to CNN on MNIST

Accuracy = % of correct predictions = TP + TN
Adversarial Attacks and Defenses

Fast-Gradient Sign Method

- Choose an image
- Fix the perturbation size
- Submit!

choose model

UPLOAD IMAGE

5

SUBMIT
Conclusion
Conclusion

Our contribution

- Improved defense against multiple types of attacks
- Model performance for clean inputs is preserved
- No retraining, no overhead for prediction
- Easy to integrate into models.

Takeaway

- The problem of adversarial examples needs to be solved before applying machine learning.

nemesis

- Our library of attacks and defenses
- Soon to be open source.

